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Abstract. The leptonic tensor for the process e+e− → γ + γ∗, which describes the next-to-leading order
virtual and soft QED corrections to initial state radiation in e+e− annihilation with emission of an
extra virtual photon decaying into hadrons, is calculated. A Monte Carlo generator for the reaction
e+e− → γ + π+π− has been set up which includes these corrections. It thus describes configurations
where the invariant mass of the hadrons plus photon is very close to s1/2. Predictions for cms energies
of 1 to 10 GeV, corresponding to the energies of DAPHNE and B-meson factories, are presented. The
possibility for an accurate measurement using tagged photons of σ(e+e− → hadrons), which plays an
important role in the theoretical description of the muon anomalous magnetic moment and the running
of the electromagnetic coupling, is discussed.

1 Introduction

Electroweak precision measurements have become one of
the central issues in present day particle physics. The re-
cent measurement of the muon anomalous magnetic mo-
ment (g − 2)µ reported in [1] shows a discrepancy at the
2.6 standard deviation level with respect to the theoretical
evaluation of this quantity [2]. This disagreement, which
has been taken as an indication of new physics, has trig-
gered a raving and somehow controversial deluge of non-
standard model explanations.

One of the main ingredients of the theoretical pre-
diction for the muon anomalous magnetic moment is the
hadronic vacuum polarization contribution [3] which
moreover is responsible for the bulk of the theoretical er-
ror. It is in turn related via dispersion relations to the cross
section for electron–positron annihilation into hadrons,
σhad. This quantity plays also an important role in the
evolution of the electromagnetic coupling αQED from the
low energy Thompson limit to high energies [3,4]. This in-
deed means that the interpretation of improved measure-
ments at high energy colliders like LEP, LHC, or Tevatron
depends significantly on the precise knowledge of σhad.

The evaluation of the hadronic vacuum polarization
contribution to the muon anomalous magnetic moment,
and even more so to the running of αQED, requires the
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measurement of σhad over a wide range of energies. Of par-
ticular importance is the low energy region around 2GeV,
where σhad is at present experimentally poorly determined
and only marginally consistent with the predictions based
on pQCD. New efforts are therefore mandatory in this
direction, which could help to either remove or sharpen
the discrepancy between theoretical prediction and exper-
imental results for (g − 2)µ.

The feasibility of using tagged photons at high lumi-
nosity electron–positron storage rings, like the φ-factory
DAPHNE or at B-factories, to measure σhad has been pro-
posed and studied in detail in [5,6] (see also [7,8]). In
this case, the machine is operating at a fixed cms energy
and initial state radiation is used to reduce the effective
energy and thus the invariant mass of the hadronic sys-
tem. The measurement of the tagged photon energy helps
to constrain the kinematics. Preliminary experimental re-
sults using this method have been presented recently by
the KLOE collaboration [9]. Large event rates were also
observed by the BaBar collaboration [10].

In this paper we consider the next-to-leading order
(NLO) QED corrections to initial state radiation (ISR)
in the annihilation process e+e− → γ + hadrons. After
factorizing the hadronic contribution, the leptonic tensor,
which contains virtual and soft photon corrections, is cal-
culated. An improved Monte Carlo generator including
these terms has been set up. Predictions for the exclusive
channel e+e− → π+π−γ at cms energies of 1 to 10GeV,
corresponding to the energies of DAPHNE and B-meson
factories, are presented. The comparison with the EVA [5]
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Fig. 1. Initial state radiation in the annihilation process
e+e− → γ + hadrons at the Born level

Monte Carlo, simulating the same process at leading order
(LO), is performed.

2 The leptonic tensor at leading order

Consider the e+e− annihilation process

e+(p1) + e−(p2) → γ∗ (Q) + γ(k1),
↓

hadrons (1)

where the virtual photon decays into a hadronic final state
and the real one is emitted from the initial state (Fig. 1).
The differential rate can be cast into the product of a
leptonic and a hadronic tensor and the corresponding fac-
torized phase space

dσ =
1
2s
LµνH

µνdΦ2(p1, p2;Q, k1)dΦn(Q; q1, ·, qn)dQ
2

2π
,

(2)

where dΦn(Q; q1, ·, qn) denotes the hadronic n-body phase
space with all the statistical factors coming from the
hadronic final state included.

For an arbitrary hadronic final state, the matrix ele-
ment for the diagrams in Fig. 1 is given by

M0 = M
µ
0 Jµ = (Mµ

0a +M
µ
0b)Jµ (3)

= − e2

Q2
v̄(p1)

(
ε/∗(k1)[k/1 − p/1 +me]γµ

2k1 · p1
+
γµ[p/2 − k/1 +me]ε/∗(k1)

2k1 · p2

)
u(p2)Jµ,

where Jµ is the hadronic current. Summing over the po-
larizations of the final real photon, averaging over the po-
larizations of the initial e+e− state, and using current con-
servation, QµJ

µ = 0, the leptonic tensor

Lµν
0 =Mµ

0M
ν+
0 ,

can be written in the following form:

Lµν
0 =

(4πα/s)2

q4

×
[(

2m2q2(1 − q2)2
y21y

2
2

− 2q2 + y21 + y
2
2

y1y2

)
gµν

+
(
8m2

y22
− 4q2

y1y2

)
pµ
1p

ν
1

s
+

(
8m2

y21
− 4q2

y1y2

)
pµ
2p

ν
2

s

−
(
8m2

y1y2

)
pµ
1p

ν
2 + p

ν
1p

µ
2

s

]
, (4)

with

yi =
2k1 · pi

s
, m2 =

m2e
s
, q2 =

Q2

s
. (5)

It is symmetric under the exchange of the electron and the
positron momenta. Expressing the bilinear products yi by
the photon emission angle in the center of mass frame

y1,2 =
1 − q2

2
(1 ∓ β cos θ), β =

√
1 − 4m2,

and rewriting the two-body phase space

dΦ2(p1, p2;Q, k1) =
1 − q2
32π2

dΩ, (6)

it is evident that expression (4) contains several singular-
ities: soft singularities for q2 → 1 and collinear singular-
ities for cos θ → ±1. The former are avoided by requir-
ing a minimal photon energy. The latter are regulated by
the electron mass. For s � m2e, the expression (4) can
nevertheless safely be taken in the limit me → 0 if the
emitted real photon lies far from the collinear region. In
general, however, one encounters spurious singularities in
the phase space integrations if powers of m2 = m2e/s are
prematurely neglected.

The physics of the hadronic system, whose description
is model dependent, enters only through the hadronic ten-
sor

Hµν = JµJν+, (7)

where the hadronic current has to be parameterized
through form factors. For two charged pions in the final
state, the current

Jµ
2π = ieF2π(Q2)(qπ+ − qπ−)µ, (8)

where qπ+ and qπ− are the momenta of the π+ and π−
respectively, is determined by only one function, the pion
form factor F2π [11]. The hadronic current for four pions
exhibits a more complicated structure and has been dis-
cussed in [12].

After integrating the hadronic tensor over the hadronic
phase space, one gets∫

HµνdΦn(Q; q1, ·, qn) = e2

6π
(QµQν − gµνQ2)R(Q2),

(9)
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Fig. 2. One-loop corrections to initial
state radiation in e+e− → γ + hadrons

where R(Q2) = σ(e+e− → hadrons)/σ(e+e− → µ+µ−).
After the additional integration over the photon angles,
the differential distribution

Q2
dσ
dQ2

=
4α3

3s
R(Q2)

{
s2 +Q4

s(s−Q2)
(
log

s

m2e
− 1

)}
, (10)

is obtained. If instead the photon polar angle is restricted
to be in the range θmin < θ < π − θmin, this differential
distribution is given by

Q2
dσ
dQ2

=
4α3

3s
R(Q2) (11)

×
{
s2 +Q4

s(s−Q2) log
1 + cos θmin
1 − cos θmin

− s−Q2
s

cos θmin

}
.

In the latter case, the electron mass can be taken equal
to zero before integration, since the collinear region is ex-
cluded by the angular cut. The contribution of the two
pion exclusive channel can be calculated from (10) and
(11) by the substitution R(Q2) → (1 − 4m2π/Q

2)3/2
| F2π(Q2) |2 /4.

3 Virtual and soft photon corrections
to the leptonic tensor

At NLO, the leptonic tensor receives contributions both
from one-loop corrections (Fig. 2) arising from the inser-
tion of virtual photon lines in the tree diagrams of Fig. 1

and from the emission of an extra real photon from the
initial state. In this paper, we consider only the emission
of soft photons. The contribution of a second hard photon
will be considered in a separate work [13].

The one-loop matrix elements contribute to the lep-
tonic tensor through their interference with the lowest or-
der diagrams (Fig. 1). They contain ultraviolet (UV) and
infrared (IR) divergences which are regularized using di-
mensional regularization in D = 4 − 2ε dimensions. The
UV divergences are renormalized in the on-shell scheme.
The IR divergences are canceled by adding the contribu-
tion of an extra soft photon emitted from the initial state
and integrated in the phase space up to an energy cutoff
Eγ < w(s)1/2 far below s1/2. The result, which is finite,
depends, however, on this soft photon cutoff. Only the
contribution from hard photons with energy Eγ > w(s)1/2
would cancel this dependence.

The algebraic manipulations have been carried out
with the help of the FeynCalc Mathematica package [14].
Using standard techniques [15], it automatically reduces
the evaluation of the one-loop contribution to the cal-
culation of a few scalar one-loop integrals, listed in Ap-
pendixB, and performs the Dirac algebra.

At NLO, the leptonic tensor has the following general
form:

Lµν =
(4πα/s)2

q4y1y2

[
a00g

µν + a11
pµ
1p

ν
1

s
+ a22

pµ
2p

ν
2

s

+ a12
pµ
1p

ν
2 + p

µ
2p

ν
1

s
+ iπa−1

pµ
1p

ν
2 − pµ

2p
ν
1

s

]
. (12)
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The scalar coefficients aij and a−1 allow the following ex-
pansion to be made:

aij = a
(0)
ij +

α

π
a
(1)
ij , a−1 =

α

π
a
(1)
−1. (13)

The LO coefficients a(0)ij can be directly read from (4). For
vanishing electron mass

a
(0)
00 = −(2q2 + y21 + y

2
2), a

(0)
12 = 0,

a
(0)
11 = a(0)22 = −4q2. (14)

Below, we use m2e 
 s,Q2 and neglect terms proportional
to m2e, which is a valid approximation if the observed pho-
ton is far from the collinear region. The imaginary anti-
symmetric piece proportional to a−1 appears for the first
time at the NLO. The leptonic tensor remains therefore
fully symmetric only at the LO.

After adding the one-loop and the soft contribution,
we end up with expressions for the NLO coefficients a(1)ij

and a(1)−1 which can be found in AppendixA. As a test of
our calculation, the leptonic tensor has been contracted
with (qµqν − q2gµν). The result is

Lµν(qµqν − q2gµν) = L
µν
0 (qµqν − q2gµν)

×
{
1 +

α

π

[− log(4w2)[1 + log(m2)]

−3
2
log

(
m2

q2

)
− 2 +

π2

3
+

2y1y2
2q2 + y21 + y

2
2

×
(
1 + (1 − y2)2

2y1y2
L(y1) +

1 − 2q2

2(1 − q2)2 log(q
2)

+
[
1 − y1 − 2y2

2(1 − y2) − y1y2
4(1 − y2)2

]
log

(
y1
q2

)

− 1
2(1 − q2) +

1
4(1 − y1)

+
1 − y2
4y1

+ (y1 ↔ y2)
)]}

, (15)

where

Lµν
0 (qµqν − q2gµν) = (4πα/s)2

2(2q2 + y21 + y
2
2)

q2y1y2
, (16)

reproduces, up to coupling constants and global factors,
the one given in [16] for the QED radiative corrections to
the reaction e+e− → Zγ.

The leptonic tensor can be cast, from (12) and Ap-
pendixA, into the form

Lµν = Lµν
0

{
1 +

α

π

[− log(4w2)[1 + log(m2)]

− 3
2
log(m2) − 2 +

π2

3

]}
+ Cµν , (17)

where the expected soft and collinear behavior is mani-
fest. The first term, log(4w2)[1 + log(m2)], coming from
the emission of soft photons, gives a large contribution
which eventually could spoil the improvement expected

from a NLO analysis. The soft cutoff w should be small
enough to justify the soft photon approximation. On the
other hand, a very small value of w would result in a mean-
ingless negative cross section. To overcome this difficulty,
the contribution of a second hard photon, with energy
Eγ > w(s)1/2, should be added [13], thus canceling the
w dependence. However, one may also limit the analysis
to configurations where the additional radiated photon is
required to be soft, by constraining the invariant mass of
the hadron + photon system. For small w the following
exponentiation can be used:

1 − α

π
log(4w2)[1 + log(m2)] → (2w)−(2α/π)[1+log(m2)].

(18)

This accounts for the leading soft logarithms to all orders
in perturbation theory [17] and vanishes in the limit w →
0, as expected.

Another contribution which can be rather large and
was not considered up to now, is the insertion of vacuum
polarization corrections to the virtual photon line in Fig. 1.
Its inclusion does not affect the other features of our cal-
culation. It introduces a correction which is proportional
to the Born leptonic tensor and can be reabsorbed in the
choice of a running coupling constant. In order to take
into account also the higher orders, a factor 1/(1 − δVP)
where δVP is the vacuum polarization contribution can
be included. In the present version of this program, this
factor has been dropped for simplicity.

Motivated by these considerations, the following im-
proved leptonic tensor can be defined:

Lµν =
(2w)−(2α/π)[1+log(m2)]

1 − δVP (19)

×
[
Lµν
0

{
1 +

α

π

[
−3
2
log(m2) − 2 +

π2

3

]}
+ Cµν

]
.

4 Monte Carlo simulation

A Monte Carlo generator has been built. It simulates the
process e+e− → π+π−γ where the photon is emitted from
the initial state, with a large angle with respect to the
beam direction. It is based on EVA [5] and includes the
NLO corrections described in the previous sections1. The
program is built in a modular way such that the simu-
lation of other exclusive hadronic channels can be eas-
ily included while keeping the factorization of the ini-
tial state QED corrections. Configurations with an ad-
ditional hard photon have not yet been included. Hence
the generator can only be used to describe configurations
where the invariant mass of the hadronic system plus the
tagged photon is close to the total energy of the collision,
M(γ + hadrons) > (1 − w)(s)1/2. A generator which in-
cludes also emission of two hard photons will be presented
in a subsequent publication.

1 The default version of the program is based on (20)–(24)
and is thus valid in the limit m2

e/s � 1. As an alternative, it is
also possible to run the program with formulae which include
the complete me dependence
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Fig. 3. Initial state radiation in the process e+e− → π+π−γ
at the Born (blue) and NLO level for s1/2 = 1.02GeV. Virtual
plus soft contributions are considered with a soft cutoff equal
to w = 0.01 at fixed order (yellow) and exponentiated (red).
The final state radiation contribution (including interference
with ISR) is also shown (green). The cuts are 7◦ < θγ < 20◦

or 160◦ < θγ < 173◦, 30◦ < θπ < 150◦ and the energy of the
observed photon Eγ > 0.02GeV

In Fig. 3, the differential distribution in the invariant
mass of the hadronic system is shown for the process
e+e− → π+π−γ at DAPHNE energies, s1/2 = 1.02GeV.
In principle, initial and final state radiation (FSR) would
be required for the complete simulation of the process.
However, the following cuts select configurations domi-
nated by initial state radiation: pions in the central re-
gion, 30◦ < θπ < 150◦, and photons close to the beam
and well separated from the pions, 7◦ < θγ < 20◦ or
160◦ < θγ < 173◦, [5,6]. For comparison, the contribution
of the final state radiation at Born level is also shown.
The corrections to the Born approximation reach up to
20% for a soft cutoff of w = 0.01 if the fixed order expres-
sion (17) is used, or 17% if the exponentiation of the soft
cutoff, (18), is applied.

At B-factories, s1/2 = 10.6GeV, the situation is
slightly different. Because of the higher center of mass en-
ergy, the hadronic system and the real photon are mainly
produced back to back. The FSR is therefore already sup-
pressed without imposing additional kinematical cuts on
the hadronic system. For these high energies one might
in addition include photons emitted also at larger an-
gles. From the analysis of EVA [5] one finds that the
events are always dominated by ISR – a consequence of
the strong form factor suppression of FSR at high ener-
gies and large angles between pions and photons. Figure 4
shows the differential distribution in the invariant mass of
the hadronic system at s1/2 = 10.6GeV for photons in the
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Fig. 4. Initial state radiation in the process e+e− → π+π−γ
at the Born (blue) and NLO level for s1/2 = 10.6GeV. Virtual
plus soft contributions are considered with a soft cutoff equal
to w = 0.001 at fixed order (yellow) and exponentiated (red).
The cuts are 7◦ < θγ < 173◦ and the energy of the observed
photon Eγ > 0.02GeV

region 7◦ < θγ < 173◦ and no constraints to the hadronic
system. The FSR amounts to less than 10−3 and is not
shown. The NLO corrections are again dominated by the
value of the soft photon cutoff.

5 Leading log resummation

From the results of the previous section, it is clear that
the fixed order correction is dominated by the value of the
soft photon cutoff w. Even if the exponentiation is applied,
which accounts for the leading soft logarithms to all or-
ders in perturbation theory, the situation does not improve
much. The addition of the contribution of a second hard
photon would cancel the strong w dependence; however,
large logarithms of collinear origin, L = log(s/m2e), would
remain. Because these large logarithms will show up in
all orders of perturbation theory, resummation techniques
have been developed which are constructed to include the
dominant higher order terms. The method of structure
functions [18,19] accounts well for these corrections. It
takes into account all the leading logarithmic corrections
O(αL), coming from virtual, soft, and hard photon con-
tributions to all orders in perturbation theory.

In [5] these effects were considered in the simulation
of the process e+e− → π+π−γ. The formulas of [20] were
used which include terms up to order α2L2. A minimal in-
variant mass of the π+π−γ system was required in order
to reduce the kinematic distortion of the events due to the
collinear initial state radiation. For a sufficiently tight cut
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Fig. 5. Subleading NLO contribution to initial state radiation
in the process e+e− → π+π−γ. Same cuts as in Fig. 3

this corresponds to the situation discussed in the present
paper. For a minimal invariant mass of the π+π−γ sys-
tem of 0.9GeV2, a negative 6% correction to the Born
approximation was found.

Subleading effects, which correspond to the Cµν terms
of our leptonic tensor in (17), are not taken into account
within this approximation. In Fig. 5, the contribution of
these subleading terms to the differential distribution of
Fig. 3 is shown. They amount to 0.6% of the Born approx-
imation close to the ρ-resonance, where the rate is max-
imal, and to 1% for small values of Q2, where, however,
the cross section rate is small. Similar values are found for
higher center of mass energies. The matching of the re-
summed result, through the structure function technique,
with the fixed order result is under study [13].

6 Conclusions

ISR at high luminosity e+e− colliders (φ and B-factories)
is an alternative to the direct measurement of σ(e+e− →
hadrons) giving access to a wide range of energies, from
threshold to the center of mass energy of the collider. The
NLO QED correction to ISR, in the form of a leptonic
tensor, has been calculated and included in a Monte Carlo
generator, which was compared with EVA [5] for the π+π−
exclusive channel. The modular structure of the calcula-
tion, independent of the final state hadronic system, is
such that other hadronic channels or improved parame-
terizations of the hadronic current can easily be included.

From our results it is clear that the fixed order correc-
tion is dominated by the value of the soft photon cutoff
w. Only the contribution of a second hard photon [13]
would cancel this strong w dependence. But even if this

contribution is added, large logarithms of collinear origin,
L = log(s/m2e), would still remain. Furthermore, they will
show up in all orders of perturbation theory. A consis-
tent way to resum such leading log terms together with
subleading effects is also under consideration [13].
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Appendix

A Tensor coefficients

In this appendix, we collect our results for the scalar coef-
ficients of the leptonic tensor (12) at the NLO arising from
virtual and soft photon contributions. Our expressions are
valid in the limit of small electron mass.

For the coefficient proportional to gµν , we get

a
(1)
00 = a(0)00

[
− log(4w2)[1 + log(m2)]

− 3
2
log

(
m2

q2

)
− 2 +

π2

3

]

− q2(1 − q2)
2

− y1y2 −
[
q2 +

2y1y2
1 − q2

]
log(q2)

+
y1
2

[
4 − y1 − 3(1 + q2)

1 − y2

]
log

(
y1
q2

)

+
y2
2

[
4 − y2 − 3(1 + q2)

1 − y1

]
log

(
y2
q2

)

−
[
1 + (1 − y2)2 + y1q

2

y2

]
L(y1)

−
[
1 + (1 − y1)2 + y2q

2

y1

]
L(y2), (20)

with

L(yi) = Li2

(−yi

q2

)
− Li2

(
1 − 1

q2

)

+ log(q2 + yi) log
(
yi

q2

)
,

where Li2 is the Spence or dilogarithm function and yi,
q2 and m2 have been defined in (5). The quantity w de-
notes the dimensionless value of the soft photon energy
cutoff: Eγ < w(s)1/2. The coefficient in front of the tensor
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structure pµ
1p

ν
1 , is given by

a
(1)
11 = a(0)11

[
− log(4w2)[1 + log(m2)] (21)

− 3
2
log

(
m2

q2

)
− 2 +

π2

3

]

+ (1 + q2)2
(

1
1 − y1 − 1

1 − q2
)

− 4(1 − y2)y1
1 − q2

− 2q2

1 − q2
[
(1 − y2)

(
1
y2

+
q2

y1
+

2y1
1 − q2

)

+
2q2

1 − q2
]
log(q2) − q2

[
1 +

2
y2

]
log

(
y1
q2

)

− q2
[
(2 − 3y1)(1 − y2)2
y1(1 − y1)2

]
log

(
y2
q2

)

− 2q2
[
1 +

1
y22

]
L(y1) − 2q2

[
3 +

2q2

y1
+
q4

y21

]
L(y2),

that in front of pµ
2p

ν
2 can be obtained by symmetric con-

siderations, exchanging the positron with the electron mo-
menta

a
(1)
22 = a(1)11 (y1 ↔ y2). (22)

For the symmetric tensor structure (pµ
1p

ν
2 + p

µ
2p

ν
1) we get

a
(1)
12 =

q2

1 − y1 +
q2

1 − y2 − 4q2 + (y1 − y2)2
1 − q2 (23)

− 2q2
[
q2

y1y2
+

1 + q2 − 2y1y2
(1 − q2)2

]
log(q2)

− 2q2

1 − y2

[
1 − y1 + q2

y2
− q2

2(1 − y2)
]
log

(
y1
q2

)

− 2q2

1 − y1

[
1 − y2 + q2

y1
− q2

2(1 − y1)
]
log

(
y2
q2

)

− 2q2
[
1 +

q2

y2
+
q2

y22

]
L(y1)

− 2q2
[
1 +

q2

y1
+
q2

y21

]
L(y2).

Finally, the antisymmetric coefficient a−1, accompanying
(pµ
1p

ν
2 − pµ

2p
ν
1), reads

a
(1)
−1 = q

2
[
log(m2y2)

y1
+

1 − q2
1 − y1 +

q2

(1 − y1)2
]

− (y1 ↔ y2). (24)

B Loop integrals and soft photon contribution

The Passarino–Veltman procedure [15] allows one to re-
duce the calculation of any one-loop amplitude to the eval-
uation of a few scalar one-loop integrals. In this appendix,
we collect the scalar one-loop integrals needed for our cal-
culation and give their expression in the limit of small

electron mass. Ultraviolet (UV) and infrared (IR) diver-
gences appear in the one-loop calculation. Dimensional
regularization in D = 4 − 2ε dimensions is used to regu-
larize both kind of divergences. The UV divergences are
renormalized using the on-shell renormalization scheme.
The soft photon contribution to the leptonic tensor can-
cels the remaining IR divergences.

A few two-, three-, and four-point scalar one-loop in-
tegrals enter our calculation. Expression for the two-point
scalar integrals are simple and well known. The general
three-point scalar one-loop integral is defined by

C0(p2a, (pa − pb)2, p2b ,m
2
1,m

2
2,m

2
3) = −i16π2µ4−D

× ∫ dDk

(2π)D
1

[k2 −m21][(k − pa)2 −m22][(k − pb)2 −m23]
.

(25)

Four different three-point scalar one-loop integrals are
needed

C01 = C0((pi − k1)2, 0,m2e, 0,m2e,m2e),
C02 = C0(m2e, s,m

2
e, 0,m

2
e,m

2
e),

C03 = C0((pi − k1)2, Q2,m2e, 0,m2e,m2e),
C04 = C0(Q2, s, 0,m2e,m

2
e,m

2
e), (26)

i = 1, 2, and one scalar box

D0 = −i16π2µ4−D
∫ dDk

(2π)D

× 1
k2[(k+pi)2−m2e][(k+pi−k1)2−m2e][(k−pj)2−m2e]

,

(27)

with j �= i.
In the limit of vanishing electron mass:m2e 
 s,Q2, yi,

the following results are obtained:

C01 =
s−1

yi

[
−1
2
log2

m2

yi
− π2

3

]
,

C02 = s−1
[
log(m2)∆− log2(m2)

2
− 2π2

3
+ iπ∆

]
,

C03 =
s−1

q2 + yi

[
log(m2) log

(
yi

q2

)

− 2 log(q2 + yi) log
(
yi

q2

)

+
log2(yi)

2
− log2(q2)

2
− 2Li2

(−yi

q2

)
− 7π2

6

+ iπ log
(
yi

q2

)]
,

C04 =
s−1

1 − q2
[
log(m2) − log(q2)

2
+ iπ

]
log(q2),

D0 =
s−2

yi

[
− log(m2)∆+ 2 log(m2) log

(
yi

q2

)

− 2Li2

(
1 − 1

q2

)
− 5π2

6

− iπ
(
∆− log(m2) − 2 log

(
yi

q2

))]
, (28)
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where

∆ =
(4π)ε

εΓ (1 − ε)
(
µ2

s

)ε

. (29)

They can be compared, for instance, with the one-loop
integrals quoted in [16] where a fake photon mass λ was
used to regularize the IR divergences. The identification
∆ ↔ log(λ2/s) allows one to pass from one scheme to the
other.

B.1 Initial state soft photon emission

The contribution to the leptonic tensor of a soft photon
with momentum k and energy E < w(s)1/2, with w 
 1,
reads

Lµν
soft = −4e2

µ4−D

2(2π)D−1

∫ w
√

s

0
ED−3dEdΩ

×
(

p1
2p1 · k − p2

2p2 · k
)2
Lµν
0 . (30)

Integrated in the soft photon phase space [21] and in the
limit of small electron mass, we get

Lµν
soft =

α

π

{[
∆− log(4w2)

] [
1 + log(m2)

]

− log2(m2)
2

− log(m2) − π2

3

}
Lµν
0 . (31)

After UV renormalization, the renormalized one-loop ma-
trix elements M̃i of the diagrams in Fig. 2, which con-
tribute at the NLO to the leptonic tensor through their
interference with the Born diagrams, give the following IR
contribution:

Lµν
IR =

∑
i=1,4

(M̃µ
i M

ν+
0 +Mµ

0 M̃
ν+
i )

∣∣∣∣∣∣
ε

= −α
π
∆

[
log(m2) + 1

]
Lµν
0 . (32)

Summing up (31) and (32), a finite result is found.
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